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Backflow-affected relaxation in nematic liquid crystals

D. SVENSEK* and S. ZUMER
Oddelek za fiziko, Univerza v Ljubljani, Jadranska 19, 1000 Ljubljana, Slovenija

(Received 23 October 2000; accepted 16 April 2001)

A complete numerical study of a two-dimensional nematic backflow problem is pre-
sented. Nematodynamic equations are reviewed, and characteristic scales are introduced. The
relaxation under the application and suppression of a magnetic field is studied in square- and
rectangular-shaped cells. Solutions for the flow fields, director fields, and director time
derivative fields are given and these are interpreted to gain a qualitative understanding of the
problem. The backflow is found to depend critically on the geometry of the cell. The complete
solution is compared with the simplified approach in which the backflow is neglected. The
discrepancy depends strongly on the cell geometry.

1. Introduction

Problems involving hydrodynamic motion of a
nematic liquid crystal due to director reorientation have
been studied mainly in terms of the Ericksen—Leslie
continuum theory of the nematic liquid crystal [1,2].
For one-dimensional geometry, Clark and Leslie [3]
have given a thorough approximative analysis of nematic
relaxation upon the removal of an electric or magnetic
field; a complete numerical treatment of the problem
has been given by van Doorn [4]. Pieranski, Brochard
and Guyon [5, 6] have studied, both theoretically and
experimentally, the one-dimensional dynamic behaviour
in a magnetic field for three geometries (twisted, planar
to homeotropic, homeotropic to planar), limited to small
deformations (applying near-critical fields). They give
the distortion wave vector and effective viscosity depend-
ence on the magnetic field strength. The instability
against periodic distortion in the case of the Freedericksz
transition (first observed by Carr [ 7]) has been studied
by Guyon et al. [8] for the two-dimensional case,
and by Hurd et al. [9] for three dimensions. The pattern
formation in a rotating magnetic field has been observed
experimentally and accounted for by a numerical study
based on the Ericksen—Leslie equations [10,11]. An
experiment measuring the rotational viscosity is described
by Bajc [ 12], together with a full hydrodynamic numerical
treatment in a cylindrical geometry (one dimension),
yielding an exact expression for the effective viscosity,
depending on the director field configuration and thus
on time. Recently, a two-dimensional hydrodynamic
description of a rotating nematic sample in a magnetic
field was published [13], neglecting the backflow;
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however, since the flow field was prescribed to be that
of a homogeneously revolving cylinder, this simplified
the problem enormously.

In this paper a full two-dimensional hydrodynamic
study of a flow-aligning nematic sample in a magnetic
field is presented, producing non-trivial backflow fields
even in the simplest geometries such as a square or
a rectangle. First a short review of nematodynamic
equations is given, followed by an introduction to the
characteristic scales of the problem. In the second part,
the flow fields are tentatively interpreted by strict
analytical as well as by less strict arguments. Also, the
influence of the backflow on the director reorientation
is discussed. The idea pursued throughout the paper is
to provide a sufficient, qualitative physical understanding
of the backflow generation and its effect on the director
field, to be able to explain or even foresee the global
time path of relaxation processes. The relaxation with
the backflow is then compared with the simplified case
where backflow is neglected. The issues in question here
are the change in the switching time of the cell caused
by the backflow, and the local departure of the director
orientation from the orientation in the simple case,
pursued along the whole path of relaxation.

2. [Equations of nematodynamics

Three basic equations are involved in the problem of
nematodynamics ; these are the equation of motion of the
director field, the generalized Navier—Stokes equation,
and the equation of continuity. For most purposes the
latter is simply reduced to the equation of incompressiblity,
whereas the former two are relatively extensive due to
the (uniaxial) anisotropy of the nematic fluid as well as
to the coupling between the director reorientation and
flow.
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The time evolution equation for the director field is a
balance between generalized elastic, electromagnetic and
viscous forces. In principle, both electric and magnetic
fields can be used to manipulate the nematic director.
However, the use of an electric field, though more
efficient, brings about some difficulties to deal with, i.e.
the dielectric problem has to be solved exactly, and the
convection of ions should be taken into account. As a
result of this, the theoretical study to be presented in
this paper uses a magnetic field. To obtain the elasto-
magnetic part, the Frank elastic free-energy density
function [ 14, pp. 102, 1197 is used:

1 , o1 , 1 :
j=5K11(V n) +EK33[H X (V Xn)] —E—(n B)
Ho

(1)

where n is a unit vector representing the director, K,
and K,; are the splay and the bend elastic constants,
respectively, B is the magnetic field, and y, is the
magnetic susceptibility anisotropy, i.e. the difference
between the susceptibilities parallel and perpendicular to
the director. The case of y, >0 will be considered here,
as this is the situation present in most nematic sub-
stances. According to the limitation of two-dimensional
problems, the twist term is missing in equation (1);
furthermore, the surface terms have been dropped in (1)
on account of fixed boundary conditions. Parametrizing
n =(cos ¢, sin ¢), the Euler-Lagrange equation for the
function (1) gives the elasto-magnetic generalized force:

oy, i] (2)

™= — ;
o9 0(0;p)

The viscous generalized force is obtained from the
dissipation function containing scalar invariants formed
with n, n and Vv [15, p. 142]:

h"=—y N—7A n (3)

where the rotational viscosity y, and y, are expressed in
terms of the Leslie viscosity coefficients a;, y; = o3 — o,
v, =03+ op. With n being the material time derivative
of the director,

1
N=fn—E(V Xv)Xn=n+W n

is the vector of the relative director rotation with respect
to the rotation of the fluid, and finally

1
Aij=5(6ivj+ 6jvi)

1
Wij = E(aivj— ajvl.)

are the symmetric and antisymmetric parts of the velocity
gradient, respectively. In the angle parametrization of
the director, the viscous force becomes

1Y =(n xh"),. (4)

Thus, the equation of motion of the director reads briefly
as,

™+ h=0. (5)
The generalized Navier—Stokes equation,

dv
pa=—Vp+V (6" + ¢°) (6)

where p is the density and p is the pressure, involves
two stress tensor contributions. The viscous part is
obtained from the same dissipation function as the
generalized force (3) [ 15, p. 142]:

"= n®nm A n)+ o,n® N+ oz N&Xn
+ oA+ oasn® (A n)+ ag(A n)®n (7)

where o; terms are the Leslie viscosity coefficients.
The elastic part of the stress tensor is a consequence
of deformations changing the director field gradients,
[14, p. 1527:

0.1, (8)

The pressure field in equation (6) is set by the
incompressibility condition

vV v=0 )

i.e. it has to be determined in such a way that the flow
be incompressible.

2.1. Characteristic scales
In this section the equations will be rewritten in a
dimensionless form, introducing the characteristic time
and length scales of the problem. Lengths are to be
measured in terms of the container size L:

x
P
L
Another characteristic length, the magnetic coherence
length &, = (oK1 /|1.|B*)"? will serve as a measure for
the magnetic field strength:

B

B—>—

0
where B, is the magnetic field strength giving a coherence
length of L. The time scale of the problem is determined
by the typical relaxation time of the director field
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deformed over the distance L,

t y L?
t—>—, 1=

10
. K. (10)

which is of the order of 1 s for a 10 um sample. Typical
relaxation time in a magnetic field is t/B°, where B is
the field strength in the dimensionless units introduced
earlier. Another time scale is given by a typical transition
time during which the velocity field equilibrates due to
viscous and elastic forces,

_pL?
Y1 ’

To (11)
The ratio 7o/t is very small, typically of the order 10~ °.
The remaining quantities are expressed in terms of these
units, thus:

v T
y—>— —>p—
L PP
ii ai
K;— , Oy
11 Y1

Equations (5) and (6) now read as

op 1
—+ (v V)p=h"—(a3+ a,)(n X(4 n)),+ =(V Xv),
ot 2

(12)
ov T
—+ (v V)v==Vp+ —V (¢"+ ¢°). (13)

ot To

Equation (13) can be simplified further by noting
that the Reynolds number, Re = 1,/7, is very small, and
hence the second left-hand side term can be omitted.
Additionally, due to the big difference in the relaxation
times 7 and t,, the velocity field adapts almost instan-
taneously to a given director field and its time derivative.
Therefore the velocity field can be solved for its final
value while keeping the director field fixed, yielding

0=—Vp+—V (¢"+ o°). (14)

To

3. Description of the problem and a numerical
implementation

In this paper the relaxation of a nematic sample upon
turning on and switching off a magnetic field is studied.
The problem considered is two-dimensional (figure 1):
the quantities involved depend on x and y, while the
director is lying in the xy plane. The orienting magnetic
field points along the y axis. A container of square or
rectangular cross section is adopted, extending to infinity
in the z direction. The limit of infinitely strong anchor-
ing is considered, which fixes the director field at the

B FieldON | | Field OFF
\J

///// Py
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Figure 1. The calculations are performed in a square or
rectangular geometry. Two types of relaxation are studied:
(a) starting with a uniform director field, the magnetic
field is switched on, or (b) the magnetic field is switched
off to disorient a well aligned sample. The director is fixed
at the boundaries as shown.

boundaries. In practice, this means that the extrapolation
length [ 14, p. 113], &, must be much smaller compared
both with the sample size and the magnetic coherence
length, i.e. {<« L and ¢« &,. To avoid any frustration,
the alignment is parallel for horizontal sides, while for
vertical sides it is homeotropic. Standard no-slip boundary
conditions are prescribed for the flow, setting the velocity
to zero at the boundaries. Material parameters such as
the viscosity and the elastic coefficients correspond to
those for MBBA, listed in [ 14, pp. 105, 231].

The partial differential equations (PDEs) (12) and
(14) are solved using finite difference discretization. At a
given director field and its time derivative, equation (14)
is solved by relaxation on a staggered grid [16, p. 3317,
together with a Poisson equation for pressure corrections
solved at every iteration step [16, p.340]. At the
boundaries, normal pressure correction derivatives are
specified in order to meet the incompressibility condition.
Then, knowing both the director and the velocity fields,
equation (14) is advanced explicitly in time to yield the
new director field. The calculations were typically done
on a 40 X40 grid, or larger in cases where it was
necessary to observe greater detail.
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4. Mechanisms governing the problem
4.1. Backflow generation

As indicated by calculations, the elastic stress tensor
contribution (8) alters the velocity field by up to 10%.
Thus, while it is of some importance when studying the
flow fields, to a first approximation it can be neglected
when the influence of the backflow on the director field
is in question, this influence itself also being small.

Our interpretation of the velocity fields will be based
solely on the viscous coupling given by equation (7).
What is more, it turns out that the anisotropy of the
fluid viscosity, described by terms in (7) with oy, s
and o, has no qualitative importance. The driving force
of all the interesting flow phenomena observed is the
anisotropy of the coupling to the director rotation given
by the two terms with o, and o in (7). Since a,/as~ 70,
only the o, term needs to be taken into account when
trying to interpret the results. There are two contri-
butions to the force exerted on the fluid described by
this term, one depending on the gradient of the director
rotation, and the other on the director field gradient.
Putting ¢ = ® and ¢ =0 one obtains

ow
f1=052(09_) (15)
ox

for the rotation gradient dependent force. Generally,
this force is always perpendicular to the director, while
its magnitude depends on the w derivative along the
director, n Vw. The second contribution is best seen if
we put Vo =(¢,,0):

f, = —a,mwp, (cos 2¢, sin 2p). (16)

Thus, the magnitude of this force depends only on w|Ve],
whereas its direction is such that it makes twice the
angle with V¢ as the director. The reader should bear
in mind that o, is negative and that the direction of the
force just described depends on the sign of w.

4.2. Influence of backflow on the director rotation

Let us discuss the torque on the director exerted by
the flow. A flow field corresponding to a pure rotation
(VXv#0, A=0) imposes the same rotation on the
director, as equation (12) suggests by putting h*" to
zero. Conversely, pure extensional flow (V Xv =0, A #0)
aligns the director along the axis of extension. For shear
flow, which is a sum of the flows just mentioned,
equation (12) gives

. 1 V2
p=—=n|—cos2p+1 (17)
2°\n

where ¢ measures the angle relative to the velocity
direction and n is the shear rate (see figure 2 for the sign
convention). Equation (17) has a stationary solution

47 ¢

Figure 2. The director angle ¢ in equation (17) is measured
relative to the shear as shown.

only if |y,/y;|>1, ie. if o3 <0, which is the condition
for the flow-aligning nematic, as opposed to the flow-
tumbling nematic, where o3 > 0 (see the end of §5 for a
short discussion on the backflow effect in flow-tumbling
nematics). The stationary solution of (17) gives

lpol< 1 (18)

since y,/y;~ — 1. The director is thus rotated towards
the velocity direction. The solution with ¢, > 0 is stable,
whereas that with g, < 0 is not. For MBBA the alignment
angle is approximately ¢,~ 7°. Note that when out of
equilibrium, the director is rotated anticlockwise only
for |p|<|po|, whereas for any other orientation the
stationary state is approached by a clockwise rotation
(for the situation as depicted in figure 2).

5. Results and interpretation
5.1. Field-off relaxation

In this example the sample is initially aligned in a
magnetic field. The field is then switched off instan-
taneously, and the system relaxes back to the undeformed
configuration. In the square cell, the early stages of this
relaxation show an anticlockwise central vortex, accom-
panied by two clockwise eddies at the bottom and top,
whereas there are no eddies near the vertical boundaries,
figure 3 (@). Equations (15) and (16) can explain this
asymmetry, for both force contributions depend on the
relative orientation of the director with respect to Vo
and Vg, respectively, which is different for the horizontal
as it is for the vertical boundaries. The size of the eddies
is of the order of the magnetic coherence length. Their
centres are located near the region in which the director
field curvature is a maximum (¢ ==/4). In the course of
time, the maximum curvature region moves to the middle
of the cell, and so do the clockwise eddies, figure 3 (b).
Finally, the central anticlockwise current is completely
eliminated. Figure 4 shows the total deformation of the
fluid due to the backflow after the relaxation process
has stopped.

Let us now take a qualitative look at the forces near
the boundaries, considering regions in the middle of the
edges where lateral derivatives can be neglected to a
first approximation. Only the components parallel to
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Figure 3. Field off in the square cell: subsequent snapshots of the velocity fields (left column), director fields and director angular
velocity fields (represented by levels of gray) show a typical two-step relaxation. (a) In the beginning, three vortices are present,
while the director in the middle rotates in the opposite sense; the line of the stationary director field is indicated by the dashed
contour. (b) Clockwise vortices are becoming dominant, note the reverse director deformation at the centre. (¢) The clockwise
vortices have joined to form a single vortex, the sense of rotation now being opposite to that at the beginning The interior
starts rotating in the right sense at a high rate—compare with the rotation in (a).

the boundaries are considered, since this must be the
direction of the velocity there. One has to realize that
the initial relaxation rate |w| has a maximum at ¢ = n/4,
since the magnetic force is the strongest there, implying
a maximum elastic force to be balanced with. Note that

o is negative. For the outermost parts of the sample,
where ¢ < r/4, |o| increases on moving away from the
boundary. Hence, equation (15) gives forces trying to
start a clockwise current round the cell. However, the
forces described by equation (16) oppose the first ones for
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Figure 4. The total deformation of the fluid after the field-off
relaxation in the square cell. In the field-on case, the
deformation is similar but opposite. Characteristically, to
a first approximation it does not depend on the field
strength since the backflow velocity scales as B?, whereas
the relaxation time is proportional to 1/B>.

the vertical boundaries, whereas those for the horizontal
boundaries add constructively. This is one of the reasons
for the missing eddies near the vertical boundaries. Moving
further away from the boundaries, ¢ becomes essentially
n/2 and there are no forces parallel to the boundaries
given by equation (16). On the other hand, equation (15)
does yield forces for the horizontal boundaries (and
none for the vertical ones), starting an anticlockwise
current.

Of course, the situation is too complex for the square-
shaped cell to be interpreted completely due to the fact
that the corners play an important role, the problem
there being fully two-dimensional. Therefore we aim to
make a more exact analysis for one-dimensional cases,
obtained by extending either the horizontal or the
vertical boundaries to infinity. In this way, we arrive at
the systems studied by Pieranski and co-workers [5, 6]
in the limit of weak deformations. Figure 5 (and figure 10
in next section) representing a cell with a 5:1 side ratio,
should serve as an illustration for the one-dimensional
cases.

Calculations for L > L, clearly give three vortices,
figure 5(a), whereas those for L > L result in a single
vortex only (L, and L, are the dimensions of the cell
in the x and y directions, respectively). Being able to
explain this on the basis of equations (15) and (16)
would yield evidence for the non-trivial flow fields being
a consequence of the o, term in (7). In a one-constant

approximation [ 14, p. 104],
em 2 1 2 o
" =Vip+ EB sin 2¢ (19)

the initial director configuration for large enough fields
is

¢ =2 arctan(exp (Br)) — g (20)

where B is the magnetic field used to align the sample
(always lying in the vertical direction), and r is the
distance from the boundary. This solution is obtained
by using the boundary condition ¢’ =0 for ¢ = /2, where
the prime denotes differentiation with respect to r. The
correct condition requires ¢’ =0 for r=1/2 (centre of
the cell), which however involves elliptic integrals. Thus,
solution (20) is valid if the field is large enough such
that for r = 1/2 the director is well aligned (p~ =/2).

Putting w =¢” and o' =¢", with ¢ given by the
solution (20), one obtains the forces (15) and (16). The
components parallel to the boundary are shown in
figure 6. They behave as expected from the preceding
discussion.

Now let us calculate the approximate initial velocity
profiles for both the horizontal and vertical one-
dimensional cell. In one dimension, the pressure term and
the elastic stress term in equation (14) can be neglected
since they can only yield transverse forces (even in more
dimensions they are of minor importance, provided that
V v =0 is satisfied). The remaining equation

v ' =0 (21)

is easily solved retaining only the o, and «, terms in 6",
equation (7). Together with equation (20) the solution
reads

v(r) = —32% {_

Oy

[N Y [39)

1
}COS(ﬂig cos 3¢

+ Cln(cos™ ' ¢+ tan p)+ D]

with the constants

1
C=
In(cos™ ' gy + tan ¢,)

3 1
XI:{?} cos g, + — cos 3(p0—{
3 6

[N ISIRNFN

|

W WA
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Figure 5. Field off in a horizontal cell with L /L, =35 (note the scale): two-step relaxation. See figure 3 for the key to the figures.
(a) In the beginning three vortices are formed (figure 7), the director field undergoes a reverse rotation in the middle (note the
zero rotation contour, shown dashed). (b) At the moment of flow reversal, note the deformation of the central director field.

(¢) A clockwise current results, while the director in the
with the rotation in (a).

where ¢, represents the director angle in the middle of
the cell. The upper expressions stand for the horizontal
cell, the lower ones for the vertical cell. The solutions
are plotted in figure 7, and the difference between the
horizontal and vertical cases is clearly seen. It is worth

centre is rotating in the right sense at a maximum rate—compare

pointing out again that, qualitatively, it is also possible
to use these results for the regions close to the middle
of the boundaries of the square cell, where the situation
resembles the one-dimensional case—compare figures
3(a) and 5(a).
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Figure 6. Total initial forces—sum of expressions (15) and
(16)—for the horizontal and vertical (dashed) cell as
functions of the distance from the boundary (r=0.5 in
the centre).

v
2
= r
o e
-4 //
/
/I
-6 ’/
0 0.1 0.2 0.3 0.4 0.5
Figure 7. Initial velocity profile, equation (21), for the hori-

zontal and vertical (dashed) cell (B = 20). In the horizontal
case, two opposing currents are predicted. The width of
the counter-current near the boundary is of the order
of the magnetic coherence length. On the other hand, the
vertical cell gives a single current only, although the net
force changes sign near the boundary (figure 6). Both
analytical predictions based on the simplified viscous
stress tensor are consistent with numerical results.

So far, only the generation of the backflow has been
studied. We now consider the inverse phenomena of how
the backflow influences the director rotation. In both
one-dimensional cases we are confronted with pure shear
flow, the effect of which are described by equation (17).
The situation is now completely different for the hori-
zontal and vertical cases. In the horizontal case, the shear-
ing backflow slows the director rotation in the middle of
the cell, figure 5(a), and is moreover actually able to reverse
the direction of rotation due to the weak elastic forces
there, figures 5(b) and (8). This phenomenon is known
as the kickback effect [17, p. 167]. Near the boundaries,
however, the shear is opposite, thus accelerating the
relaxation. As a result, the gradient of w becomes larger,
which induces an even stronger backflow (a positive feed-
back effect). One has to keep in mind that the backflow
effect is only a perturbation to the relaxation which,

D. Svensek and S. Zumer

Figure 8. Vertical cross-sections through the centre of the
horizontal cell (field-off): director angle as a function of
transverse coordinate is shown for subsequent moments
in time (early stage only). The backflow alters the process
in the centre (above), compared with the simple relaxation
without the flow (below).

in this case, is governed by elastic forces. Thus, when
talking about the positive feedback, one must remember
that this is only a small contribution to the director and
flow fields, whereas global behaviour is still set by the
elasticity. Eventually, elastic forces become dominant
even in the middle of the cell (figure 8), reversing the
rotation of the inner part and accelerating it, while
slowing the rotation of the outer part. We are then left
with the centre reorienting faster than the edges, figures
5(c) and 8, a situation opposite to the initial one. As a
result, the backflow also changes direction, transforming
from an anticlockwise central current with two opposite
eddies at the top and bottom to a single clockwise current.
The latter is then stable; accelerating the relaxation in
the middle of the cell it grows stronger initially (a positive
feedback again), then slowly fades as the elastic forces
vanish. This type of process where, in a region of the
sample, the director is rotated backwards for some period
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of time and then the flow direction is suddenly reversed,
will be referred to as a two-step relaxation. One can
notice that in the square cell the relaxation path is quite
similar. The kickback effect is observed, figures 3 (a) and
3(b), as well as the reversal of the flow, figure 3 (c).

For the vertical case, however, in the middle of the
cell the director is not rotated backwards by the back-
flow, but merely held in the field-aligned orientation.
By contrast, near the boundaries the reorientation is
accelerated by the backflow as for the horizontal case.
As a result, the relaxation proceeds from the edges and
then gradually bites to the centre, much like the case
of a simple relaxation without taking into account the
backflow (figure 8, lower diagram). This conserves the
direction of the current. One can call a process like this
a one-step relaxation. Eventually, we end up with a
reverse current in this case also, but this happens much
later and when the sample has almost relaxed. Also, the
reversal of the current proceeds very slowly and steadily
from the outside; it does not happen suddenly in the
whole cell as in the horizontal case.

5.2. Field-on relaxation

Now we consider the case in which the initial director
field is undeformed, and a vertical magnetic field is applied
at a small angle (2°) off the normal to the director,
which does not significantly alter the critical behaviour
of the transition [17, p. 105]. Due to the increasing rate
of rotation w toward the centre, an anticlockwise current
is predicted by equation (15), while the force (16) is
initally unimportant, since the director is uniform.
Calculations for the square cell show that in the course
of time the current is split into two vortices, while in
between these two clockwise vortices are also formed,
and we finish with 4 major vortices, figure 9 (b).

Again it is useful if one first focuses on the one-
dimensional cases. For the horizontal cell initially there
is no current, because the director is perpendicular to
the gradient of w, equation (15). If the cell is not infinite,
but just extended in the horizontal direction, the flow is
limited to the short boundaries, where Vw points along
the director. For a long cell, however, this is unimportant.
When the director turns a little, the force (15) becomes
larger initiating the anticlockwise current. With the
deformed director field the force (16) also starts contri-
buting to the anticlockwise current. After the director
has reached the angle of instability (18) in the centre,
the reorientation is accelerated by the current, resulting
in a positive feedback strengthening the backflow. The
positive feedback is greatly amplified by the magnetic
torque, which in this case is the driving force of the
relaxation. It acts like a fuse triggering the magnetic
torque by rotating the director off the field normal,

equation (19). On the other hand, near the boundaries
the relaxation is slowed by the shear there having
opposite sign (the director tends to stay flow-aligned).
Consequently, when eventually the relaxation ceases in
the middle of the cell, the outer parts are still relaxing.
Now the force (15) changes direction, trying to start a
clockwise current. It is opposed by the V¢ dependent
force (16), which is strongest near the boundaries. As a
result, the flow dies out in the middle of the cell first,
followed by a cessation at the boundaries.

Again the situation is quite different for the vertical
case (figure 10). However, unlike the field-off relaxation,
now it will be the more interesting one. Here the anti-
clockwise flow due to the force (15) is initiated immediately,
since now Vo points along the director. Moreover, in
the middle of the cell the shear starts to rotate the
director at a maximum rate as a result of being normal
to the director, equation (17). On the other hand, near
the boundaries the shear is opposite, thus turning the
director in the reverse sense, again at a maximum rate,
figure 10 (@). Here we are dealing with two effective mech-
anisms that turn on the magnetic torque, one in the
middle of the cell generating an accelerated anticlockwise
rotation, the other at the boundaries causing clockwise
rotation, which is also amplified by the magnetic field.
Hence, this gives rise to a strong anticlockwise current
first (positive feedback again), as confirmed by figure 10 (a).
However, the force (16), becoming more important as
the deformation increases, opposes the clockwise rotation.
The flow is thus subject to a kind of frustration. As a
result of this, it is able to change direction very rapidly,
as the force (15) ceases. One can make an estimation of
the director angle at which the net force changes sign,
using w =1/2Bsin 2¢ with equations (15) and (16),
yielding

1
"=—0,B*(2 cos® 2¢p+ cos 20— 1)¢".
2

This gives ¢ =30° for the angle of force reversal. Since
the angle is maximum in the centre of the sample, this
is where the flow reversal is initiated. After some time,
the interior has almost relaxed when the outer director
field just begins to rotate in the right sense, figure 10 (b).
The gradient of w is reversed, the force (15) changes
direction, now acting in accordance with the force (16).
The clockwise current accelerates the relaxation of the
outer part (positive feedback) while additionally slowing
the rotation in the centre, figure 10(c). Interestingly, this
current is larger than the initial anticlockwise current.
Thus, for the field-on relaxation, the interesting
scenario also involves two steps: in the beginning a weak
magnetic torque generates backflow due to non-uniform
rotation. In some regions, the backflow accelerates the
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Figure 10. Field on in the vertical cell with L,/L =5 (note the scale), two-step relaxation: see figure 3 for the key to the figures.
(a) Flow-induced backward rotation near the vertical boundaries is amplified by the field (contour of zero rotation is shown
dashed). (b) Backflow is changing direction, note the director deformation near the vertical boundaries. (¢) The flow has
changed direction, as well as the gradient of ¢. The situation is similar to that in (a), but reversed; note that the velocities are

large in magnitude.

more complex fourfold low pattern figure 9 (b). Clearly
the flow reversal mechanism is present in this case also,
yet towards the end the original flow direction is restored.
However, calculations for L /L =2 already yield a
definite flow reversal.

Finally, it should be mentioned that the processes
studied in this paper do not depend critically on the
sign of the Leslie coefficient o3, which sets the flow-
aligning or flow-tumbling properties of the nematic,
subject to the simple shear flow. If o is set to zero or
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even its sign is reversed (keeping its value small), no
radical changes are observed. For our discussion to be
valid, only the condition |o;3 /o, |< 1 must be satisfied.

6. Comparison with the simplified treatment

The relaxation with the backflow is to be compared
now with the simplified relaxation without taking into
account the backflow. Figure 11 shows the time depend-
ence of sin® ¢, averaged over the square cell, for both
the full and simple treatments. Here the effect of the
backflow is mainly to speed-up the relaxation process,
a situation that is most frequently observed. In some
cases, however, the influence of the backflow is more
complicated and one cannot speak simply about changes
of the relaxation rate. This occurs in the vertical cell if
a strong enough field is applied so that the two-step
process becomes very distinct (figure 12). At a lower
field strength, on the other hand, the simple regime is
again restorted (figure 13).

The importance of the geometry is clearly seen if one
compares figures 12 and 14, showing the time depend-
ences of the Fourier components of sin® ¢ in the vertical
and the horizontal cells, respectively. The fields are
rescaled relative to the critical field

Bl = &(n/Lx)Z—i— (n/L,) (22)
Kll Y

so that the ratio B/B, is the same in both cases, allowing
one to make a direct comparison. Evidently, when
turning on the field, the backflow effect is much stronger
in the vertical cell (two-step process) than in the hori-
zontal cell (single-step process). As far as the field-off
relaxation is concerned, the same conclusion holds.
There the effect is stronger in the horizontal geometry,
which in this case yields the two-step scenario.

061 Field ON 1
0.4 i

&

;5; —— with backflow

e 024 N\ / | T without backflow

Field OFF
0.0+ i
0.00 0.05 0.10 0.15

Figure 11. Time dependence of sin® ¢ (square cell), averaged
over the cell, for cases with and without taking into
account the backflow. Magnetic field of strength B =10
is turned on and off.
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Figure 12. Time dependence of the largest cosine Fourier
components of sin® g, for the full and the simplified treat-
ment (vertical cell, magnetic field of strength B =120 is
turned on). The average is denoted by F(0, 0), whereas
F(2, 0) stands for the component belonging to cos(2nx/L.).
It is shown that the average behaviour can be more
complicated than normal (compare figures 11 or 14). Note
that the difference is much larger for the F(2,0) com-
ponents than for the averages, indicating that due to the
backflow the rotation is indeed faster in the middle of
the cell and slower near the boundaries (see also figure 10).
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Figure 13. Time dependence of the cosine Fourier components
of sin® ¢, defined in figure 12, for the full and simplified
treatments (horizontal cell, magnetic field of strength
B =10 is turned on). Note that due to the weaker field
the average behaviour is less complex, when compared
with figure 12.

7. Conclusion

In this paper, two-dimensional nematodynamic
problems have been studied in their full form, making
no approximation other than a low Reynolds number,
which is practically exact for the problems concerned.
First, one must note the remarkable non-triviality of the
generated velocity fields, i.e. the formation of several
vortices, despite the simple geometry and strictly laminar
flow. This is a consequence of the delicate inter-
connections between the director and the flow field. In
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Figure 14. Time dependence of the cosine Fourier components
of sin® ¢, defined in figure 12, for the full and simplified
treatments (horizontal cell, magnetic field of strength
B =20 is turned on). The figure should serve as a contrast
to figure 12, showing that the backflow effect is less
pronounced in the horizontal cell.

addition, it has been shown that the form of the backflow,
as well as its time evolution, depend very much on
the geometry of the system, as does the influence of the
backflow on the director reorientation. It is stronger for
the two-step processes, which are characterized by a
global reversal of the flow direction.

Besides numerical solutions, this paper also highlights
the qualitative picture of the backflow problem. Thus,
following the discussion of § 5, one is able to foresee the
global flow dynamics in the cell, without having to per-
form any extensive numerical calculations. In particular,
it is worth pointing out again that the backflow scenario
depends crucially on the relative orientation of the mag-
netic field with respect to the long axis of the cell. It has
been assumed that |us/o;|< 1 holds for the two Leslie
coefficients, whereas the sign of o3 has proved not to be
significant.

From the experimental viewpoint, the results presented
in this paper are directly applicable to samples confined
in tubes of square or rectangular cross section. In this
case, the geometry is essentially two-dimensional, while
additionally the in-plane magnetic field constrains the
director to the planar orientation. The switching of pixels
in a classic nematic display is a more useful example. A
pixel is a part of a liquid crystal cell that is controlled
by a local electric field. This system is relatively close
to the cases of elongated cells presented in this paper.
Usually, the pixel is thin compared with its lateral size.
However, if the director rotates in a plane normal to
the pixel plane, one can, as a reasonable approximation,
make use of our results for the rectangular-shaped cells.
Thus, in this case the geometry of the calculation is
defined by the cross-section of the switching plane with
the pixel. The dimensions of the rectangle so obtained

are the pixel thickness and its lateral size. Despite the
fact that only cells with a 5:1 side ratio were presented
in this paper, ratios of 20:1 or more can be reached on
a regular basis.

Our results can also be used in the case of in-plane
switching pixels, where the director rotation takes place
in the pixel plane. However, the extent of agreement
would strongly depend on the boundary conditions at
the upper and lower pixel plane. If the rotation of the
director is not hindered too much at the boundaries and
the no-slip boundary condition for the velocity is not
strictly satisfied then the agreement with our calculation
should be good.

The effect of finite anchoring strengths has not been
studied. Nevertheless, one can state that for decreasing
anchoring strength the backflow velocity, and thus
the torque exerted on the director, start decaying as
1— /&, where & and &, are the extrapolation and the
magnetic coherence length, respectively. This means that
the anchoring strength should be kept strong (¢/¢,< 1)
in order to observe any backflow effects.

If one wanted to consider the experimental or appli-
cation situation more closely, a full three-dimensional
calculation would be needed. With this, however, the
treatment would become numerically quite demanding.
It is also doubtful whether a complete solution to the
problem would bring much benefit, since the effect of
the backflow is limited more or less to quantitative
corrections, as demonstrated in this paper. Nevertheless,
there are special cases where the backflow plays a decisive
role and crucially alters the evolution path of the system.
For example, the amplification of the kickback effect
(see §5.1) by a horizontal magnetic field leads to the
creation of a domain wall. This phenomenon would
never take place if the backflow was not present.

Besides specific examples of this kind, there is another
type of problem where the backflow is expected to be
very important, namely the relaxation of structures con-
taining defects, for example attraction of defects, defect
annihilation, and so on. The introduction of defects to
the director field, however, brings about enormous tech-
nical difficulties considering the discretization, this having
prevented these problems from being solved for several
years although sufficient computer power has been avail-
able. Therefore, our future research will be aimed at
examining these areas.
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