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Back� ow-aŒected relaxation in nematic liquid crystals

D. SVENSÊ EK* and S. ZÊ UMER

Oddelek za � ziko, Univerza v Ljubljani, Jadranska 19, 1000 Ljubljana, Slovenija

(Received 23 October 2000; accepted 16 April 2001)

A complete numerical study of a two-dimensional nematic back� ow problem is pre-
sented. Nematodynamic equations are reviewed, and characteristic scales are introduced. The
relaxation under the application and suppression of a magnetic � eld is studied in square- and
rectangular-shaped cells. Solutions for the � ow � elds, director � elds, and director time
derivative � elds are given and these are interpreted to gain a qualitative understanding of the
problem. The back� ow is found to depend critically on the geometry of the cell. The complete
solution is compared with the simpli� ed approach in which the back� ow is neglected. The
discrepancy depends strongly on the cell geometry.

1. Introduction however, since the � ow � eld was prescribed to be that
of a homogeneously revolving cylinder, this simpli� edProblems involving hydrodynamic motion of a

nematic liquid crystal due to director reorientation have the problem enormously.
In this paper a full two-dimensional hydrodynamicbeen studied mainly in terms of the Ericksen–Leslie

continuum theory of the nematic liquid crystal [1, 2]. study of a � ow-aligning nematic sample in a magnetic
� eld is presented, producing non-trivial back� ow � eldsFor one-dimensional geometry, Clark and Leslie [3]

have given a thorough approximative analysis of nematic even in the simplest geometries such as a square or
a rectangle. First a short review of nematodynamicrelaxation upon the removal of an electric or magnetic

� eld; a complete numerical treatment of the problem equations is given, followed by an introduction to the
characteristic scales of the problem. In the second part,has been given by van Doorn [4]. Pieranski, Brochard

and Guyon [5, 6] have studied, both theoretically and the � ow � elds are tentatively interpreted by strict
analytical as well as by less strict arguments. Also, theexperimentally, the one-dimensional dynamic behaviour

in a magnetic � eld for three geometries (twisted, planar in� uence of the back� ow on the director reorientation
is discussed. The idea pursued throughout the paper isto homeotropic, homeotropic to planar), limited to small

deformations (applying near-critical � elds). They give to provide a su� cient, qualitative physical understanding
of the back� ow generation and its eŒect on the directorthe distortion wave vector and eŒective viscosity depend-

ence on the magnetic � eld strength. The instability � eld, to be able to explain or even foresee the global
time path of relaxation processes. The relaxation withagainst periodic distortion in the case of the Freedericksz

transition (� rst observed by Carr [7]) has been studied the back� ow is then compared with the simpli� ed case
where back� ow is neglected. The issues in question hereby Guyon et al. [8] for the two-dimensional case,

and by Hurd et al. [9] for three dimensions. The pattern are the change in the switching time of the cell caused
by the back� ow, and the local departure of the directorformation in a rotating magnetic � eld has been observed

experimentally and accounted for by a numerical study orientation from the orientation in the simple case,
pursued along the whole path of relaxation.based on the Ericksen–Leslie equations [10, 11]. An

experiment measuring the rotational viscosity is described
by Bajc [12], together with a full hydrodynamic numerical 2. Equations of nematodynamics
treatment in a cylindrical geometry (one dimension), Three basic equations are involved in the problem of
yielding an exact expression for the eŒective viscosity, nematodynamics ; these are the equation of motion of the
depending on the director � eld con� guration and thus director � eld, the generalized Navier–Stokes equation,
on time. Recently, a two-dimensional hydrodynamic and the equation of continuity. For most purposes the
description of a rotating nematic sample in a magnetic latter is simply reduced to the equation of incompressib ility,
� eld was published [13], neglecting the back� ow; whereas the former two are relatively extensive due to

the (uniaxial ) anisotropy of the nematic � uid as well as
to the coupling between the director reorientation and*Author for correspondence;

e-mail: daniel.svensek@fmf.uni-lj.si � ow.
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1390 D. SvensÊ ek and S. ZÊ umer

The time evolution equation for the director � eld is a are the symmetric and antisymmetric parts of the velocity
gradient, respectively. In the angle parametrization ofbalance between generalized elastic, electromagnetic and

viscous forces. In principle, both electric and magnetic the director, the viscous force becomes
� elds can be used to manipulate the nematic director.

hv 5 (n Ö hv )
z
. (4)However, the use of an electric � eld, though more

e� cient, brings about some di� culties to deal with, i.e. Thus, the equation of motion of the director reads brie� y
the dielectric problem has to be solved exactly, and the as,
convection of ions should be taken into account. As a

hem 1 hv 5 0. (5)result of this, the theoretical study to be presented in
this paper uses a magnetic � eld. To obtain the elasto- The generalized Navier–Stokes equation,
magnetic part, the Frank elastic free-energy density
function [14, pp. 102, 119] is used:

r
dv

dt
5 Õ = p 1 = ¯ (sv 1 se ) (6)

f 5
1
2

K11 ( = ¯ n)2 1
1
2

K33 [n Ö ( = Ö n)]2 Õ
1
2

xa
m0

(n ¯ B)2
where r is the density and p is the pressure, involves
two stress tensor contributions. The viscous part is

(1 ) obtained from the same dissipation function as the
generalized force (3) [15, p. 142]:where n is a unit vector representing the director, K11

and K33 are the splay and the bend elastic constants, sv 5 a1nE n(n ¯ A ¯ n) 1 a2nE N 1 a3NE n
respectively, B is the magnetic � eld, and xa is the

1 a4A 1 a5nE (A ¯ n) 1 a6 (A ¯ n)E n (7)magnetic susceptibility anisotropy, i.e. the diŒerence
between the susceptibilities parallel and perpendicular to

where a
i

terms are the Leslie viscosity coe� cients.
the director. The case of xa > 0 will be considered here,

The elastic part of the stress tensor is a consequence
as this is the situation present in most nematic sub-

of deformations changing the director � eld gradients,
stances. According to the limitation of two-dimensional

[14, p. 152]:
problems, the twist term is missing in equation (1);
furthermore, the surface terms have been dropped in (1 )

se
ij

5 Õ
q f

q (q
i
n
k
)
q
j
n
k
. (8)on account of � xed boundary conditions. Parametrizing

n 5 (cos Q, sin Q), the Euler–Lagrange equation for the
The pressure � eld in equation (6 ) is set by thefunction (1) gives the elasto-magnetic generalized force:
incompressibility condition

hem 5 Õ
q f
qQ

1 q
iC q f

q (q
i
Q)D . (2) = ¯ v 5 0 (9)

i.e. it has to be determined in such a way that the � ow
The viscous generalized force is obtained from the be incompressible.
dissipation function containing scalar invariants formed
with n, nÁ and = v [15, p. 142]:

2.1. Characteristic scales
In this section the equations will be rewritten in ahv 5 Õ c1N Õ c2A ¯ n (3 )

dimensionless form, introducing the characteristic time
where the rotational viscosity c1 and c2 are expressed in and length scales of the problem. Lengths are to be
terms of the Leslie viscosity coe� cients a

i
, c1 5 a3 Õ a2 , measured in terms of the container size L :

c2 5 a3 1 a2 . With nÁ being the material time derivative
of the director, x �

x
L

.

N 5 nÁ Õ
1
2

( = Ö v) Ö n 5 nÁ 1 W ¯ n Another characteristic length, the magnetic coherence
length jm 5 (m0K11 /|xa |B2 )1/2 will serve as a measure for

is the vector of the relative director rotation with respect the magnetic � eld strength:
to the rotation of the � uid, and � nally

B �
B
B0A

ij
5

1

2
(q

i
v
j
1 q

j
v
i
)

where B0 is the magnetic � eld strength giving a coherence
length of L . The time scale of the problem is determinedW

ij
5

1
2

(q
i
v
j
Õ q

j
v
i
)

by the typical relaxation time of the director � eld
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1391Back� ow-aVected relaxation

deformed over the distance L ,

t �
t
t

, t 5
c1L 2

K11
(10)

which is of the order of 1 s for a 10 mm sample. Typical
relaxation time in a magnetic � eld is t/B2, where B is
the � eld strength in the dimensionless units introduced
earlier. Another time scale is given by a typical transition
time during which the velocity � eld equilibrates due to
viscous and elastic forces,

t0 5
rL 2

c1
. (11)

The ratio t0 /t is very small, typically of the order 10 Õ 6.
The remaining quantities are expressed in terms of these
units, thus:

v �
v

L /t
, p � p

t2

rL 2

K
ii

�
K

ii
K11

, a
i
�

a
i

c1
.

Equations (5) and (6) now read as

Figure 1. The calculations are performed in a square orqQ

qt
1 (v ¯ = )Q 5 hem Õ (a3 1 a2 ) (n Ö (A ¯ n) )

z
1

1
2

( = Ö v)
z rectangular geometry. Two types of relaxation are studied:

(a) starting with a uniform director � eld, the magnetic
(12) � eld is switched on, or (b) the magnetic � eld is switched

oŒto disorient a well aligned sample. The director is � xed
at the boundaries as shown.qv

qt
1 (v ¯ = )v 5 Õ = p 1

t

t0
= ¯ (sv 1 se ). (13)

boundaries. In practice, this means that the extrapolationEquation (13) can be simpli� ed further by noting
length [14, p. 113], j, must be much smaller comparedthat the Reynolds number, Re 5 t0 /t, is very small, and
both with the sample size and the magnetic coherencehence the second left-hand side term can be omitted.
length, i.e. j% L and j% jm . To avoid any frustration,Additionally, due to the big diŒerence in the relaxation
the alignment is parallel for horizontal sides, while fortimes t and t0 , the velocity � eld adapts almost instan-
vertical sides it is homeotropic. Standard no-slip boundarytaneously to a given director � eld and its time derivative.
conditions are prescribed for the � ow, setting the velocityTherefore the velocity � eld can be solved for its � nal
to zero at the boundaries. Material parameters such asvalue while keeping the director � eld � xed, yielding
the viscosity and the elastic coe� cients correspond to
those for MBBA, listed in [14, pp. 105, 231].0 5 Õ = p 1

t

t0
= ¯ (sv 1 se ). (14)

The partial diŒerential equations (PDEs) (12) and
(14) are solved using � nite diŒerence discretization. At a
given director � eld and its time derivative, equation (14)3. Description of the problem and a numerical

implementation is solved by relaxation on a staggered grid [16, p. 331],
together with a Poisson equation for pressure correctionsIn this paper the relaxation of a nematic sample upon

turning on and switching oŒa magnetic � eld is studied. solved at every iteration step [16, p. 340]. At the
boundaries, normal pressure correction derivatives areThe problem considered is two-dimensional (� gure 1):

the quantities involved depend on x and y, while the speci� ed in order to meet the incompressibility condition.
Then, knowing both the director and the velocity � elds,director is lying in the xy plane. The orienting magnetic

� eld points along the y axis. A container of square or equation (14) is advanced explicitly in time to yield the
new director � eld. The calculations were typically donerectangular cross section is adopted, extending to in� nity

in the z direction. The limit of in� nitely strong anchor- on a 40 Ö 40 grid, or larger in cases where it was
necessary to observe greater detail.ing is considered, which � xes the director � eld at the
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1392 D. SvensÊ ek and S. ZÊ umer

4. Mechanisms governing the problem
4.1. Back� ow generation

As indicated by calculations, the elastic stress tensor
contribution (8) alters the velocity � eld by up to 10%.
Thus, while it is of some importance when studying the
� ow � elds, to a � rst approximation it can be neglected
when the in� uence of the back� ow on the director � eld
is in question, this in� uence itself also being small.

Figure 2. The director angle Q in equation (17) is measured
Our interpretation of the velocity � elds will be based relative to the shear as shown.

solely on the viscous coupling given by equation (7).
What is more, it turns out that the anisotropy of the
� uid viscosity, described by terms in (7) with a1 , a5 only if |c2 /c1 | > 1, i.e. if a3 < 0, which is the condition

for the � ow-aligning nematic, as opposed to the � ow-and a6 , has no qualitative importance. The driving force
of all the interesting � ow phenomena observed is the tumbling nematic, where a3 > 0 (see the end of § 5 for a

short discussion on the back� ow eŒect in � ow-tumblinganisotropy of the coupling to the director rotation given
by the two terms with a2 and a3 in (7). Since a2 /a3 # 70, nematics) . The stationary solution of (17) gives
only the a2 term needs to be taken into account when |Q0 |% 1 (18)
trying to interpret the results. There are two contri-
butions to the force exerted on the � uid described by since c2 /c1 # Õ 1. The director is thus rotated towards

the velocity direction. The solution with Q0 > 0 is stable,this term, one depending on the gradient of the director
rotation, and the other on the director � eld gradient. whereas that with Q0 < 0 is not. For MBBA the alignment

angle is approximately Q0 # 7 ß . Note that when out ofPutting QÇ 5 v and Q 5 0 one obtains
equilibrium, the director is rotated anticlockwise only
for |Q|< |Q0 |, whereas for any other orientation thef1 5 a2 A0,

qv

qxB (15)
stationary state is approached by a clockwise rotation
(for the situation as depicted in � gure 2).

for the rotation gradient dependent force. Generally,
this force is always perpendicular to the director, while

5. Results and interpretation
its magnitude depends on the v derivative along the

5.1. Field-oV relaxation
director, n ¯ = v. The second contribution is best seen if

In this example the sample is initially aligned in awe put = Q 5 (Q
x
, 0):

magnetic � eld. The � eld is then switched oŒ instan-
f2 5 Õ a2vQ

x
(cos 2Q, sin 2Q). (16) taneously, and the system relaxes back to the undeformed

con� guration. In the square cell, the early stages of this
Thus, the magnitude of this force depends only on v| = Q|,

relaxation show an anticlockwise central vortex, accom-
whereas its direction is such that it makes twice the

panied by two clockwise eddies at the bottom and top,
angle with = Q as the director. The reader should bear

whereas there are no eddies near the vertical boundaries,
in mind that a2 is negative and that the direction of the

� gure 3 (a). Equations (15) and (16) can explain this
force just described depends on the sign of v.

asymmetry, for both force contributions depend on the
relative orientation of the director with respect to = v

4.2. In� uence of back� ow on the director rotation
and = Q, respectively, which is diŒerent for the horizontal

Let us discuss the torque on the director exerted by
as it is for the vertical boundaries. The size of the eddies

the � ow. A � ow � eld corresponding to a pure rotation
is of the order of the magnetic coherence length. Their

( = Ö v Þ 0, A 5 0) imposes the same rotation on the centres are located near the region in which the director
director, as equation (12) suggests by putting hem to

� eld curvature is a maximum (Q 5 p/4). In the course of
zero. Conversely, pure extensional � ow ( = Ö v 5 0, A Þ 0)

time, the maximum curvature region moves to the middle
aligns the director along the axis of extension. For shear

of the cell, and so do the clockwise eddies, � gure 3 (b).
� ow, which is a sum of the � ows just mentioned,

Finally, the central anticlockwise current is completely
equation (12) gives

eliminated. Figure 4 shows the total deformation of the
� uid due to the back� ow after the relaxation process

QÇ 5 Õ
1

2
gAc2

c1
cos 2Q 1 1B (17) has stopped.

Let us now take a qualitative look at the forces near
the boundaries, considering regions in the middle of thewhere Q measures the angle relative to the velocity

direction and g is the shear rate (see � gure 2 for the sign edges where lateral derivatives can be neglected to a
� rst approximation. Only the components parallel toconvention). Equation (17) has a stationary solution
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1393Back� ow-aVected relaxation

Figure 3. Field oŒin the square cell: subsequent snapshots of the velocity � elds ( left column), director � elds and director angular
velocity � elds (represented by levels of gray) show a typical two-step relaxation. (a) In the beginning, three vortices are present,
while the director in the middle rotates in the opposite sense; the line of the stationary director � eld is indicated by the dashed
contour. (b) Clockwise vortices are becoming dominant, note the reverse director deformation at the centre. (c) The clockwise
vortices have joined to form a single vortex, the sense of rotation now being opposite to that at the beginning. The interior
starts rotating in the right sense at a high rate—compare with the rotation in (a).

the boundaries are considered, since this must be the v is negative. For the outermost parts of the sample,
where Q < p/4, |v| increases on moving away from thedirection of the velocity there. One has to realize that

the initial relaxation rate |v| has a maximum at Q 5 p/4, boundary. Hence, equation (15) gives forces trying to
start a clockwise current round the cell. However, thesince the magnetic force is the strongest there, implying

a maximum elastic force to be balanced with. Note that forces described by equation (16) oppose the � rst ones for
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1394 D. SvensÊ ek and S. ZÊ umer

approximation [14, p. 104],

hem 5 = 2Q 1
1
2

B2 sin 2Q (19)

the initial director con� guration for large enough � elds
is

Q 5 2 arctan(exp (Br)) Õ
p

2
(20)

where B is the magnetic � eld used to align the sample
(always lying in the vertical direction), and r is the
distance from the boundary. This solution is obtained
by using the boundary condition Q¾ 5 0 for Q 5 p/2, where
the prime denotes diŒerentiation with respect to r. The
correct condition requires Q ¾ 5 0 for r 5 1/2 (centre of
the cell ), which however involves elliptic integrals. Thus,
solution (20) is valid if the � eld is large enough suchFigure 4. The total deformation of the � uid after the � eld-oŒ
that for r 5 1/2 the director is well aligned (Q# p/2).relaxation in the square cell. In the � eld-on case, the

deformation is similar but opposite. Characteristically, to Putting v 5 Q ² and v ¾ 5 Q ¾ ¾ ¾ , with Q given by the
a � rst approximation it does not depend on the � eld solution (20), one obtains the forces (15) and (16). The
strength since the back� ow velocity scales as B2, whereas components parallel to the boundary are shown in
the relaxation time is proportional to 1/B2.

� gure 6. They behave as expected from the preceding
discussion.

Now let us calculate the approximate initial velocity
pro� les for both the horizontal and vertical one-the vertical boundaries, whereas those for the horizontal
dimensional cell. In one dimension, the pressure term and

boundaries add constructively. This is one of the reasons
the elastic stress term in equation (14) can be neglected

for the missing eddies near the vertical boundaries . Moving
since they can only yield transverse forces (even in more

further away from the boundaries, Q becomes essentially
dimensions they are of minor importance, provided that

p/2 and there are no forces parallel to the boundaries
= ¯ v 5 0 is satis� ed). The remaining equationgiven by equation (16). On the other hand, equation (15)

does yield forces for the horizontal boundaries (and = ¯ sv 5 0 (21)
none for the vertical ones), starting an anticlockwise
current. is easily solved retaining only the a2 and a4 terms in sv,

Of course, the situation is too complex for the square- equation (7). Together with equation (20) the solution
shaped cell to be interpreted completely due to the fact reads
that the corners play an important role, the problem
there being fully two-dimensional . Therefore we aim to

v(r) 5 Õ B2
a2
a4
CG Õ 3

2
Õ 1

2H cos Q Ô
1

6
cos 3Qmake a more exact analysis for one-dimensional cases,

obtained by extending either the horizontal or the
vertical boundaries to in� nity. In this way, we arrive at

1 C ln (cosÕ 1 Q 1 tan Q) 1 DDthe systems studied by Pieranski and co-workers [5, 6]
in the limit of weak deformations. Figure 5 (and � gure 10
in next section) representing a cell with a 5 : 1 side ratio, with the constants
should serve as an illustration for the one-dimensional
cases.

C 5
1

ln (cosÕ 1 Q0 1 tan Q0 )Calculations for L
x

& L
y

clearly give three vortices,
� gure 5 (a), whereas those for L

y
& L

x
result in a single

vortex only (L
x

and L
y

are the dimensions of the cell Ö CG3
2
1
2H cos Q0 Ô

1
6

cos 3Q0 Õ G4
3
2
3HDin the x and y directions, respectively) . Being able to

explain this on the basis of equations (15) and (16)
would yield evidence for the non-trivial � ow � elds being D 5 G4

3
2
3Ha consequence of the a2 term in (7). In a one-constant
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1395Back� ow-aVected relaxation

Figure 5. Field oŒin a horizontal cell with L
x
/L

y 5 5 (note the scale): two-step relaxation. See � gure 3 for the key to the � gures.
(a) In the beginning three vortices are formed (� gure 7), the director � eld undergoes a reverse rotation in the middle (note the
zero rotation contour, shown dashed). (b) At the moment of � ow reversal, note the deformation of the central director � eld.
(c) A clockwise current results, while the director in the centre is rotating in the right sense at a maximum rate—compare
with the rotation in (a).

where Q0 represents the director angle in the middle of pointing out again that, qualitatively, it is also possible
to use these results for the regions close to the middlethe cell. The upper expressions stand for the horizontal

cell, the lower ones for the vertical cell. The solutions of the boundaries of the square cell, where the situation
resembles the one-dimensional case—compare � guresare plotted in � gure 7, and the diŒerence between the

horizontal and vertical cases is clearly seen. It is worth 3 (a) and 5 (a).
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1396 D. SvensÊ ek and S. ZÊ umer

Figure 6. Total initial forces—sum of expressions (15) and
(16)—for the horizontal and vertical (dashed) cell as
functions of the distance from the boundary (r 5 0.5 in
the centre).

Figure 7. Initial velocity pro� le, equation (21), for the hori-
Figure 8. Vertical cross-sections through the centre of thezontal and vertical (dashed) cell (B 5 20). In the horizontal

horizontal cell (� eld-oŒ): director angle as a function ofcase, two opposing currents are predicted. The width of
transverse coordinate is shown for subsequent momentsthe counter-current near the boundary is of the order
in time (early stage only). The back� ow alters the processof the magnetic coherence length. On the other hand, the
in the centre (above), compared with the simple relaxationvertical cell gives a single current only, although the net
without the � ow (below).force changes sign near the boundary (� gure 6). Both

analytical predictions based on the simpli� ed viscous
stress tensor are consistent with numerical results.

in this case, is governed by elastic forces. Thus, when
talking about the positive feedback, one must rememberSo far, only the generation of the back� ow has been

studied. We now consider the inverse phenomena of how that this is only a small contribution to the director and
� ow � elds, whereas global behaviour is still set by thethe back� ow in� uences the director rotation. In both

one-dimensional cases we are confronted with pure shear elasticity. Eventually, elastic forces become dominant
even in the middle of the cell (� gure 8), reversing the� ow, the eŒect of which are described by equation (17).

The situation is now completely diŒerent for the hori- rotation of the inner part and accelerating it, while
slowing the rotation of the outer part. We are then leftzontal and vertical cases. In the horizontal case, the shear-

ing back� ow slows the director rotation in the middle of with the centre reorienting faster than the edges, � gures
5 (c) and 8, a situation opposite to the initial one. As athe cell, � gure 5 (a), and is moreover actually able to reverse

the direction of rotation due to the weak elastic forces result, the back� ow also changes direction, transforming
from an anticlockwise central current with two oppositethere, � gures 5 (b) and (8). This phenomenon is known

as the kickback eŒect [17, p. 167]. Near the boundaries , eddies at the top and bottom to a single clockwise current.
The latter is then stable; accelerating the relaxation inhowever, the shear is opposite, thus accelerating the

relaxation. As a result, the gradient of v becomes larger, the middle of the cell it grows stronger initially (a positive
feedback again), then slowly fades as the elastic forceswhich induces an even stronger back� ow (a positive feed-

back eŒect). One has to keep in mind that the back� ow vanish. This type of process where, in a region of the
sample, the director is rotated backwards for some periodeŒect is only a perturbation to the relaxation which,
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1397Back� ow-aVected relaxation

of time and then the � ow direction is suddenly reversed, equation (19). On the other hand, near the boundaries
the relaxation is slowed by the shear there havingwill be referred to as a two-step relaxation. One can
opposite sign (the director tends to stay � ow-aligned).notice that in the square cell the relaxation path is quite
Consequently, when eventually the relaxation ceases insimilar. The kickback eŒect is observed, � gures 3 (a) and
the middle of the cell, the outer parts are still relaxing.3 (b), as well as the reversal of the � ow, � gure 3 (c).
Now the force (15) changes direction, trying to start aFor the vertical case, however, in the middle of the
clockwise current. It is opposed by the = Q dependentcell the director is not rotated backwards by the back-
force (16), which is strongest near the boundaries. As a� ow, but merely held in the � eld-aligned orientation.
result, the � ow dies out in the middle of the cell � rst,By contrast, near the boundaries the reorientation is
followed by a cessation at the boundaries.accelerated by the back� ow as for the horizontal case.

Again the situation is quite diŒerent for the verticalAs a result, the relaxation proceeds from the edges and
case (� gure 10). However, unlike the � eld-oŒrelaxation,then gradually bites to the centre, much like the case
now it will be the more interesting one. Here the anti-of a simple relaxation without taking into account the
clockwise � ow due to the force (15 ) is initiated immediately,back� ow (� gure 8, lower diagram). This conserves the
since now = v points along the director. Moreover, indirection of the current. One can call a process like this
the middle of the cell the shear starts to rotate thea one-step relaxation. Eventually, we end up with a
director at a maximum rate as a result of being normalreverse current in this case also, but this happens much
to the director, equation (17). On the other hand, nearlater and when the sample has almost relaxed. Also, the
the boundaries the shear is opposite, thus turning thereversal of the current proceeds very slowly and steadily
director in the reverse sense, again at a maximum rate,from the outside; it does not happen suddenly in the
� gure 10 (a). Here we are dealing with two eŒective mech-whole cell as in the horizontal case.
anisms that turn on the magnetic torque, one in the
middle of the cell generating an accelerated anticlockwise

5.2. Field-on relaxation rotation, the other at the boundaries causing clockwise
Now we consider the case in which the initial director rotation, which is also ampli� ed by the magnetic � eld.

� eld is undeformed, and a vertical magnetic � eld is applied Hence, this gives rise to a strong anticlockwise current
at a small angle (2 ß ) oŒ the normal to the director, � rst (positive feedback again) , as con� rmed by � gure 10 (a).
which does not signi� cantly alter the critical behaviour However, the force (16), becoming more important as
of the transition [17, p. 105]. Due to the increasing rate the deformation increases, opposes the clockwise rotation.
of rotation v toward the centre, an anticlockwise current The � ow is thus subject to a kind of frustration. As a
is predicted by equation (15), while the force (16) is result of this, it is able to change direction very rapidly,
initally unimportant, since the director is uniform. as the force (15) ceases. One can make an estimation of
Calculations for the square cell show that in the course the director angle at which the net force changes sign,
of time the current is split into two vortices, while in using v 5 1/2B2 sin 2Q with equations (15) and (16),
between these two clockwise vortices are also formed, yielding
and we � nish with 4 major vortices, � gure 9 (b).

Again it is useful if one � rst focuses on the one-
f 5

1
2

a2B2 (2 cos2 2Q 1 cos 2Q Õ 1)Q ¾ .dimensional cases. For the horizontal cell initially there
is no current, because the director is perpendicular to
the gradient of v, equation (15). If the cell is not in� nite, This gives Q 5 30 ß for the angle of force reversal. Since
but just extended in the horizontal direction, the � ow is the angle is maximum in the centre of the sample, this
limited to the short boundaries, where = v points along is where the � ow reversal is initiated. After some time,
the director. For a long cell, however, this is unimportant. the interior has almost relaxed when the outer director
When the director turns a little, the force (15) becomes � eld just begins to rotate in the right sense, � gure 10 (b).
larger initiating the anticlockwise current. With the The gradient of v is reversed, the force (15) changes
deformed director � eld the force (16) also starts contri- direction, now acting in accordance with the force (16).
buting to the anticlockwise current. After the director The clockwise current accelerates the relaxation of the
has reached the angle of instability (18) in the centre, outer part (positive feedback) while additionally slowing
the reorientation is accelerated by the current, resulting the rotation in the centre, � gure 10 (c). Interestingly, this
in a positive feedback strengthening the back� ow. The current is larger than the initial anticlockwise current.
positive feedback is greatly ampli� ed by the magnetic Thus, for the � eld-on relaxation, the interesting
torque, which in this case is the driving force of the scenario also involves two steps: in the beginning a weak
relaxation. It acts like a fuse triggering the magnetic magnetic torque generates back� ow due to non-uniform

rotation. In some regions, the back� ow accelerates thetorque by rotating the director oŒ the � eld normal,
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1398 D. SvensÊ ek and S. ZÊ umer

Figure 9. Field on in the square cell: see � gure 3 for the key to the � gures. (a) The director rotation is maximum in the middle;
the asymmetry of the corners is due to the back� ow, not to the diŒerences in the splay and bend elastic constants. (b) Now
the centre is relaxing slower, as are the NW and SE corners, which were faster in (a); an interesting four-fold � ow pattern is
observed. (c) Late stages of relaxation; the current has not changed direction completely.

rotation which has a major eŒect because in this way which causes the back� ow also to change direction. The
two-step scenario is fully developed in the vertical case,the magnetic torque becomes progressively larger and

larger. Consequently, these regions are relaxed much whereas the horizontal cell relaxes more or less in one
step, as described previously.more quickly than those for which the back� ow has a

retarding eŒect. As a result, they are already far above The sudden formation of four vortices in the square
cell can also be explained by this mechanism, only thatthe angle of maximum magnetic torque when the delayed

regions arrive at it. Now the latter regions relax faster, now all four boundaries are important, resulting in a
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1399Back� ow-aVected relaxation

Figure 10. Field on in the vertical cell with L
y
/L

x 5 5 (note the scale), two-step relaxation: see � gure 3 for the key to the � gures.
(a) Flow-induced backward rotation near the vertical boundaries is ampli� ed by the � eld (contour of zero rotation is shown
dashed). (b) Back� ow is changing direction, note the director deformation near the vertical boundaries. (c) The � ow has
changed direction, as well as the gradient of QÇ . The situation is similar to that in (a), but reversed; note that the velocities are
large in magnitude.

more complex fourfold low pattern � gure 9 (b). Clearly Finally, it should be mentioned that the processes
studied in this paper do not depend critically on thethe � ow reversal mechanism is present in this case also,

yet towards the end the original � ow direction is restored. sign of the Leslie coe� cient a3 , which sets the � ow-
aligning or � ow-tumbling properties of the nematic,However, calculations for L

y
/L

x
5 2 already yield a

de� nite � ow reversal. subject to the simple shear � ow. If a3 is set to zero or

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1400 D. SvensÊ ek and S. ZÊ umer

even its sign is reversed (keeping its value small ), no
radical changes are observed. For our discussion to be
valid, only the condition |a3 /a2 |% 1 must be satis� ed.

6. Comparison with the simpli� ed treatment
The relaxation with the back� ow is to be compared

now with the simpli� ed relaxation without taking into
account the back� ow. Figure 11 shows the time depend-
ence of sin2 Q, averaged over the square cell, for both
the full and simple treatments. Here the eŒect of the
back� ow is mainly to speed-up the relaxation process,
a situation that is most frequently observed. In some
cases, however, the in� uence of the back� ow is more
complicated and one cannot speak simply about changes

Figure 12. Time dependence of the largest cosine Fourier
of the relaxation rate. This occurs in the vertical cell if components of sin2 Q, for the full and the simpli� ed treat-
a strong enough � eld is applied so that the two-step ment (vertical cell, magnetic � eld of strength B 5 20 is

turned on). The average is denoted by F(0, 0), whereasprocess becomes very distinct (� gure 12). At a lower
F(2, 0) stands for the component belonging to cos(2px/L

x
).� eld strength, on the other hand, the simple regime is

It is shown that the average behaviour can be more
again restorted (� gure 13).

complicated than normal (compare � gures 11 or 14). Note
The importance of the geometry is clearly seen if one that the diŒerence is much larger for the F(2, 0) com-

compares � gures 12 and 14, showing the time depend- ponents than for the averages, indicating that due to the
back� ow the rotation is indeed faster in the middle ofences of the Fourier components of sin2 Q in the vertical
the cell and slower near the boundaries (see also � gure 10).and the horizontal cells, respectively. The � elds are

rescaled relative to the critical � eld

B2
c 5

K33
K11

(p/L
x
)2 1 (p/L

y
)2 (22)

so that the ratio B/Bc is the same in both cases, allowing
one to make a direct comparison. Evidently, when
turning on the � eld, the back� ow eŒect is much stronger
in the vertical cell (two-step process) than in the hori-
zontal cell (single-step process). As far as the � eld-oŒ

relaxation is concerned, the same conclusion holds.
There the eŒect is stronger in the horizontal geometry,
which in this case yields the two-step scenario.

Figure 13. Time dependence of the cosine Fourier components
of sin2 Q, de� ned in � gure 12, for the full and simpli� ed
treatments (horizontal cell, magnetic � eld of strength
B 5 10 is turned on). Note that due to the weaker � eld
the average behaviour is less complex, when compared
with � gure 12.

7. Conclusion
In this paper, two-dimensional nematodynamic

problems have been studied in their full form, making
no approximation other than a low Reynolds number,
which is practically exact for the problems concerned.
First, one must note the remarkable non-triviality of the
generated velocity � elds, i.e. the formation of several

Figure 11. Time dependence of sin2 Q (square cell ), averaged
vortices, despite the simple geometry and strictly laminarover the cell, for cases with and without taking into
� ow. This is a consequence of the delicate inter-account the back� ow. Magnetic � eld of strength B 5 10

is turned on and oŒ. connections between the director and the � ow � eld. In
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1401Back� ow-aVected relaxation

are the pixel thickness and its lateral size. Despite the
fact that only cells with a 5 : 1 side ratio were presented
in this paper, ratios of 20 : 1 or more can be reached on
a regular basis.

Our results can also be used in the case of in-plane
switching pixels, where the director rotation takes place
in the pixel plane. However, the extent of agreement
would strongly depend on the boundary conditions at
the upper and lower pixel plane. If the rotation of the
director is not hindered too much at the boundaries and
the no-slip boundary condition for the velocity is not
strictly satis� ed then the agreement with our calculation
should be good.

The eŒect of � nite anchoring strengths has not beenFigure 14. Time dependence of the cosine Fourier components
studied. Nevertheless, one can state that for decreasingof sin2 Q, de� ned in � gure 12, for the full and simpli� ed

treatments (horizontal cell, magnetic � eld of strength anchoring strength the back� ow velocity, and thus
B 5 20 is turned on). The � gure should serve as a contrast the torque exerted on the director, start decaying as
to � gure 12, showing that the back� ow eŒect is less

1 Õ j/jm , where j and jm are the extrapolation and the
pronounced in the horizontal cell.

magnetic coherence length, respectively. This means that
the anchoring strength should be kept strong (j/jm % 1)
in order to observe any back� ow eŒects.addition, it has been shown that the form of the back� ow,

as well as its time evolution, depend very much on If one wanted to consider the experimental or appli-
cation situation more closely, a full three-dimensionalthe geometry of the system, as does the in� uence of the

back� ow on the director reorientation. It is stronger for calculation would be needed. With this, however, the
treatment would become numerically quite demanding.the two-step processes, which are characterized by a

global reversal of the � ow direction. It is also doubtful whether a complete solution to the
problem would bring much bene� t, since the eŒect ofBesides numerical solutions, this paper also highlights

the qualitative picture of the back� ow problem. Thus, the back� ow is limited more or less to quantitative
corrections, as demonstrated in this paper. Nevertheless,following the discussion of § 5, one is able to foresee the

global � ow dynamics in the cell, without having to per- there are special cases where the back� ow plays a decisive
role and crucially alters the evolution path of the system.form any extensive numerical calculations. In particular,

it is worth pointing out again that the back� ow scenario For example, the ampli� cation of the kickback eŒect
(see § 5.1) by a horizontal magnetic � eld leads to thedepends crucially on the relative orientation of the mag-

netic � eld with respect to the long axis of the cell. It has creation of a domain wall. This phenomenon would
never take place if the back� ow was not present.been assumed that |a3 /a2 |% 1 holds for the two Leslie

coe� cients, whereas the sign of a3 has proved not to be Besides speci� c examples of this kind, there is another
type of problem where the back� ow is expected to besigni� cant.

From the experimental viewpoint, the results presented very important, namely the relaxation of structures con-
taining defects, for example attraction of defects, defectin this paper are directly applicable to samples con� ned

in tubes of square or rectangular cross section. In this annihilation, and so on. The introduction of defects to
the director � eld, however, brings about enormous tech-case, the geometry is essentially two-dimensional , while

additionally the in-plane magnetic � eld constrains the nical di� culties considering the discretization, this having
prevented these problems from being solved for severaldirector to the planar orientation. The switching of pixels

in a classic nematic display is a more useful example. A years although su� cient computer power has been avail-
able. Therefore, our future research will be aimed atpixel is a part of a liquid crystal cell that is controlled

by a local electric � eld. This system is relatively close examining these areas.
to the cases of elongated cells presented in this paper.
Usually, the pixel is thin compared with its lateral size. This work was supported by the Ministry of Science

and Technology of Slovenia (Grant No. J1-0595-1554- 98),However, if the director rotates in a plane normal to
the pixel plane, one can, as a reasonable approximation, US-Slovene NSF Joint Found (Grant No. 9815313) , and

SILC TMR ERBFMRX-CT98-0209 project. The authorsmake use of our results for the rectangular-shaped cells.
Thus, in this case the geometry of the calculation is are grateful to Prof. A. Kodre and Prof. G. Durand for

fruitful discussions and the interest they have shown inde� ned by the cross-section of the switching plane with
the pixel. The dimensions of the rectangle so obtained the subject.
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